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alized data representation s
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1 Introdu
tionEÆ
ient data stru
tures are at the heart of any data-manipulating 
omputer system, andthis fundamental fa
t is just as valid for distributed systems. Some distributed programminglanguages support distributed data stru
tures expli
itly (
f. [CGL86℄), and many distributedalgorithms use su
h stru
tures (expli
itly or impli
itly) for their data-management purposes.But more importantly, su
h stru
tures are in many 
ases 
onstru
ted not as part of any par-ti
ular algorithm but for dire
t use as the building blo
ks of various storage and retrievalme
hanisms, su
h as distributed di
tionaries, name servers in 
ommuni
ation networks, bul-letin boards, resour
e allo
ation managers and the like [Ree78, OD81, FWB85, LEH85,Ter87, MV88, GS89℄. The fun
tion 
ommon to all of these me
hanisms is supplying fa
ilitiesfor storing a

umulated information in the system and making it available to potential usersthroughout the system.The topi
 of distributed data stru
tures is rather wide, and the distributed setting raisesseveral issues that are not en
ountered in the usual, shared-memory sequential setting (
f.[Pel90℄). In parti
ular, this topi
 tou
hes upon several large resear
h areas, su
h as ordi-nary data stru
tures and data types, distributed database, and 
on
urren
y 
ontrol theory(
f. [LM79, Her84, Wei84, BHG86, Pap86, Her87℄). We shall make no attempt to review therelevant literature here, nor shall we address the area of 
on
urrent data stru
tures, whi
hrefers to data stru
tures stored in 
ommon (shared) memory but a

essible by many pro-
esses 
on
urrently, 
f. [BS79, Ell80a, Ell80b, KL80, ML84, Man86, BB87, PK87, RK88℄,or the area of designing spe
ial purpose VLSI ma
hines for implementing data stru
tures,
f. [Lei79, ORS82, DS85, SS85, CCIR86, DS87, OB87, SL87, AK93℄.Rather, in this paper we shall restri
t ourselves to dealing with one spe
i�
 aspe
t ofdistributed data stru
tures, namely, the relationships between the topology of the under-lying 
ommuni
ation network (and its graph-theoreti
 properties) and eÆ
ient s
hemes fororganizing and distributing data in the various sites. When the 
ommuni
ation networkunderlying the system is based on a network of arbitrary topology, various graph-theoreti
parameters be
ome signi�
ant in determining the appropriate way for distributing the dataand the resulting 
omplexity.Our primary 
on
ern is to maintain the data stru
ture using reasonable overall spa
erequirements. However, no less important is the need to balan
e the memory loads overthe sites of the system. Future systems are expe
ted to 
arry enormous loads of data, anda single site 
an hardly be expe
ted to fun
tion as the sole storing site for a large datastru
ture. It is therefore desirable to be able to distribute the data in several sites andbalan
e the memory requirements of the data stru
ture between all sites in the network.Su
h a geographi
 distribution of data among the di�erent network sites is also di
tated by
onsiderations of a

ess speed and reliability.This survey dis
usses 
ombinatorial and algorithmi
 te
hniques related to these issues,and 
overs 
omplexity results on various appli
ations. In parti
ular, we will fo
us on twospe
i�
 problems whi
h will be used for illustrating the main issues and ideas involved. The�rst of these problems 
on
erns the design of 
ompa
t lo
alized s
hemes for message routingin 
ommuni
ation networks, and the se
ond deals with adja
en
y and distan
e labeling1
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s
hemes, and more generally, informative lo
alized labeling s
hemes. For more detailedpresentation of various aspe
ts of these problems see [Gav00, Gav01, Pel00a℄.2 Compa
t Lo
alized Stru
tures for RoutingDelivering messages between pairs of pro
essors is a basi
 a
tivity of any distributed 
om-muni
ation network. This task is performed using a routing s
heme, whi
h is a me
hanismfor routing messages in the network. The routing me
hanism 
an be invoked at any originvertex and be required to deliver a message to some destination vertex.Using edge lengths to re
e
t transmission 
osts and delays, it is naturally desirable toroute messages along paths that are as short as possible. A straightforward approa
h toa
hieving this goal is to store a 
omplete routing table in ea
h vertex v in the network,spe
ifying for ea
h destination u the �rst edge (or an identi�er of that edge, indi
atingthe output port) along some shortest path from v to u. This approa
h 
learly guaranteesoptimal routes, but may be too expensive for large systems sin
e it requires a total ofO(n2 logn) memory bits in an n-pro
essor network. Thus, an important problem in larges
ale 
ommuni
ation networks is the design of routing s
hemes that produ
e eÆ
ient routesand have relatively low memory requirements. The eÆ
ien
y of a routing s
heme is measuredin terms of its stret
h, namely, the maximum ratio between the length of a route produ
esby the s
heme for some pair of pro
essors, and their distan
e.As a basi
 example, let us des
ribe an eÆ
ient method, known as interval routing s
heme(IRS) for storing shortest path routing information in a tree network. Start by traversing
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<4,[5,8]:1,[9,10]:2,[11,3]:3>Figure 1: An interval routing for T , and the data stru
ture for the vertex 4.the n-node tree T in depth �rst sear
h fashion [Tar72℄, asso
iating with ea
h vertex v anaddress label `(v) 2 [1; n℄ 
f. Fig. 1. Then, asso
iate with ea
h outgoing edge (v; u) of v theset I(v; u) of labels of all the verti
es w with the property that the route from v to w startswith the edge (v; u). By 
onstru
tion, the labels 
ontained in I(v; u) are 
onse
utive (modulon). Hen
e, to represent I(v; u) in v's memory it suÆ
es to store its interval boundaries, ata 
ost of O(logn) bits per set. Overall, the routing table of v is a data stru
ture of theform h`(v); I(v; u1) :p1; I(v; u2) :p2; : : : ; I(v; ud) :pdi where p1; p2; : : : ; pd are respe
tively theoutput port numbers leading to the neighbors u1; u2; : : : ; ud (see Fig. 1 for the vertex labeled2
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4). Therefore the size of the routing table for v is O(d logn) bits, where d is the degree ofv. This should be 
ompared with the O(n logd) bit bound for a standard routing table. Animportant feature of this method is the assignment of both vertex and edge labels. Routinga message from a sour
e v to a destination w is done by sear
hing for the interval I(v; ui) inv's table su
h that `(w) 2 I(v; ui) (implying that the message has to in
lude the destinationlabel `(w) in its header), and then forwarding the message through output port pi to theneighbor ui. This lo
al 
omputation is then repeated at any intermediate node along theroute. This sear
h 
an be performed using logn 
omparisons by sorting the intervals or inO(log logn) time using more sophisti
ated data stru
tures [vBoas77℄. Observe that the lo
almemory requirement in
reases with the degree of the vertex (in Se
tion 4 we dis
uss otherlabeling s
hemes aiming at over
oming the problem of large degree verti
es), but the totalmemory requirement is O(n logn) bits only.The interval routing s
heme for trees is due to [SK85℄. This s
heme 
an be applied rathereÆ
iently to 
ertain restri
ted graph families, and it has also been extended later to a widervariety of networks, 
f. [vLT87, FJ89, Fre93, FGS96, FG98℄. When 
onsidering intervalrouting s
hemes for 
lasses of graphs other than trees, a natural question is to identify whi
hgraphs admit interval routing along shortest paths [FG94, NS96, Fla97, EMZ97℄. Anothernatural extension is to allow using more than one interval on ea
h edge, raising the question ofhow many intervals are ne
essary to ensure shortest path routing, and how su
h a s
heme 
anbe implemented [FvLS98, GG98, GP98, GP99℄. For surveys of the many re
ent developmentsin this area see [vLT94, Gav00℄.The problem of eÆ
ien
y-memory tradeo�s for routing s
hemes was �rst raised in [KK77℄,whi
h proposed the general approa
h of hierar
hi
ally 
lustering a network into � levelsand using the resulting stru
ture for routing. The total memory used by the s
heme isO(n1+1=� � logn). However, in order to apply the method of [KK77℄ one needs to makesome fairly strong assumptions regarding the existen
e of a 
ertain partition of the network.Several variations and/or improvements were studied later, 
f. [KK80, Per82, Sun82℄.Most subsequent work on the problem has fo
used on solutions for spe
ial 
lasses ofnetwork topologies. Shortest path (i.e., stret
h fa
tor 1) routing s
hemes with total memoryrequirement O(n logn) were designed for simple topologies like trees [SK85℄, unit-
ost rings,
omplete networks and grids [vLT86, vLT87℄ and networks at the lower end of a hierar
hy(beginning with the outerplanar networks) identi�ed in [FJ88℄. The problem of designingmemory-eÆ
ient near-optimal routing s
hemes was 
ast in a theoreti
al formulation in [FJ86,FJ88, FJ89℄, where it was also given pre
ise solutions for various graph 
lasses up to andin
luding planar graphs. Near-optimal stret
hed routing s
hemes were 
onstru
ted in [FJ89,FJ90℄ for 
-de
omposable networks, for 
onstant 
, and for planar networks. The s
hemesfor 
-de
omposable networks guarantee stret
h fa
tor ranging between 2 and 3 (spe
i�
ally,1 + 2=a where a > 1 is the positive root of the equation ad(
+1)=2e � a � 2 = 0) and havetotal memory requirement O(
2 log 
 � n log2 n). The s
hemes for planar networks guaranteestret
h fa
tor 7 and have total memory requirement O(1�n1+� � logn) bits for any 
onstant0 < � < 13 . A 
ru
ial step in 
onstru
ting these routing s
hemes is assigning names to theverti
es as part of the routing s
heme. The above optimal s
hemes use O(logn) bit labels,and the routing me
hanism needs to modify the header during the message propagation.3
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The s
hemes of [FJ90℄ for 
-de
omposable networks use O(
 log 
 � logn) bit names andthe s
hemes of [FJ89, FJ90℄ for planar networks use O(1� logn) bit names and rewritableheaders. Re
ently, [GH99℄ have 
onstru
ted new routing s
hemes for planar graphs withoptimal stret
h 1. Based on book embeddings, these s
hemes use label names 2 [1; n℄ andwork with non rewritable headers. The memory bound is 8n + o(n) bits per vertex. Thes
hemes 
an be extended to g genus graphs with n log g +O(n) memory bits per vertex. Asanother example, the 
onstru
tion of 3-spanners for the family of 
hordal graphs des
ribedin [PS89℄ 
an be used to 
onstru
t routing s
hemes for these graphs with stret
h fa
tor 3and O(n log2 n) bits of memory in total. For Eu
lidean networks, namely, networks whosesites are embedded in the 2-dimensional plane with Eu
lidean distan
es, re
ent papers havedealt with proposing eÆ
ient designs for 
ompa
t routing s
hemes, based on 
ompass routingmethods (
f. [BCSW98, KSU99℄) or eÆ
ient spanner 
onstru
tions [HP00℄.The problem of 
onstru
ting 
ompa
t routing s
hemes for arbitrary unweighted networkswas studied in [PU89℄, whi
h presents a family of hierar
hi
al routing s
hemes (for every �xedinteger � � 1) that guarantee stret
h O(�) and require storing a total ofO ��3 � n1+1=� � logn�bits of routing information in the network. Just as for the IRS approa
h and the routings
hemes of [FJ89, FJ90℄, the s
hemes of [PU89℄ require assigning suitable names to the ver-ti
es. these names are of size O(log2 n) bit. However, the headers atta
hed to the messagesrequire only O(logn) bits. Furthermore, these s
hemes (as well as most earlier approa
hes,su
h as IRS and the s
hemes of [FJ89, FJ90℄) have the disadvantage that the routing infor-mation is not balan
ed on the set of verti
es. In the worst-
ase, some verti
es may require
(n logn) bits of memory.The solution of [PU89℄ was later generalized in a number of ways, and various qualitiesof the resulting s
hemes were improved in [PU87, ABLP89, ABLP90, AP92, Pel93℄. Forinstan
e, the s
hemes were extended to weighted graphs, they were modi�ed to work ina setting where verti
es 
an freely sele
t their own names or routing labels, they were pro-vided with eÆ
ient and distributed prepro
essing pro
edures and so on. These developmentsparallel a 
hain of su

essive improvements in the 
orresponding 
luster-based representa-tions used by the s
hemes. Re
ent developments 
on
erning 
ompa
t routing s
hemes withlow stret
h (mainly integral stret
hes � 5) are presented in [KKU95, FG97, GG97, NO97,EGP98, CG00, Cow01℄, and also in [TZ01℄ for higher stret
hes. See [Gav01, Pel00a℄ for moredetailed overviews.Lower bounds for the spa
e-eÆ
ien
y tradeo� of routing s
hemes were studied in [PU89,FG95, FG96, GP96, BHV96, KK96, GG97℄. More pre
isely, in [PU89℄ it is shown that everyrouting strategy that guarantees an s stret
hed routing s
heme for every n-vertex graphmust provide at least a total of 2
(n1+1=(2s+4)) di�erent routing s
hemes. Thus no routingstrategy 
an guarantee for every graph a routing s
heme with a stret
h fa
tor O(�) ando(n1+1=�) bits of total memory. For the 
ase of optimal stret
h 1, it is shown in [GP96℄ thatfor every shortest path routing strategy and for every d su
h that 3 � d � (1 � �)n, thereexists a worst-
ase graph of degree bounded by d on whi
h the total memory requirement is
(n2 log d), mat
hing with the memory requirements of standard routing tables. Both lowerbounds assume that routes and O(logn) bit label names 
an be 
omputed and optimized bythe routing strategy in order to de
rease the memory requirement.4



www.manaraa.com

The issues of name independen
e and balan
ing the memory requirements were �rst raisedin [ABLP89℄. The s
hemes proposed in [ABLP89, Pel93℄ are name-independent and applyto arbitrary weighted networks. However, they have an inferior eÆ
ien
y-spa
e tradeo�.For instan
e, the s
hemes of [ABLP89℄, for � � 1, use O(� � n1=� � logn) bits of memoryper vertex and guarantee a stret
h of O(�2 � 9�). The tradeo� was �nally improved by thes
hemes of [AP92℄, whi
h are simpler, and possess the additional attra
tive features dis
ussedabove. The stret
h is O(�2) and the memory requirement is O(� �n1=� log2 n � logD) bits pervertex, where D is the weighted diameter of the network. In fa
t, the tradeo� obtained inthe s
hemes of [AP92℄ is still not optimal, and it is 
on
eivably possible to redu
e the stret
hfa
tor of the routing s
hemes from O(�2) to O(�). Several other types of routing s
hemesfor general networks are presented in [PU87, ABLP90, TZ01℄.It is worth noting that the s
heme of [ABLP89℄ has one additional advantage, namely, itsmemory 
omplexity is independent of the range of the edge 
osts, or the network's diameter(or put another way, the routing algorithm is \purely 
ombinatorial"). Finally, it has beenproven in [EGP98℄ that, whatever the stret
h bound is, every name-independent routingstrategy that guarantees less than O(pn ) bits per vertex needs rewritable headers. (A
tuallyit is not diÆ
ult to see that the memory bound 
an be pushed to �(n logn) bits.) So, therouting proto
ols of [ABLP89℄ and [AP92℄ that, in essen
e, pro
eed in O(�) routing phases(whi
h need to be memorized in the headers) 
annot be simpli�ed below a 
ertain point.Other related work deals with routing with su

in
t routing tables. The 
ase of dynami
networks is dealt with in [AGR89℄ in the limited setting of networks whose topology is atree, and the topologi
al 
hanges are restri
ted to growing (i.e., new edges and verti
es areo

asionally added to the network). And re
ently, the routing problem was dealt with in the
ontext of the new generation of ATM and opti
al networks [DKKP95℄.3 Adja
en
y and Distan
e Labeling S
hemesMost traditional 
entralized approa
hes to the problem of network representation are basedon storing adja
en
y information using some kind of a data stru
ture, e.g., an adja
en
ymatrix. Su
h representation enables one to de
ide, given the indi
es of two verti
es, whetheror not they are adja
ent in the network, simply by looking at the appropriate entry in thetable. However, note that (a) this de
ision 
annot be made in the absen
e of the table,and (b) the indi
es themselves 
ontain no useful information, and they serve only as \pla
eholders", or pointers to entries in the table, whi
h forms a global representation of thenetwork.In 
ontrast, for a distributed 
omputing setting we are interested in more informativeand lo
alized s
hemes for representing the network. In parti
ular, labeling s
hemes are basedon the idea of asso
iating with ea
h vertex a label sele
ted in a su
h way, that will allow usto infer the adja
en
y of two verti
es dire
tly from their labels, without using any additionalinformation sour
es. Hen
e in essen
e, this rather extreme approa
h to the network repre-sentation problem dis
ards all other 
omponents, and bases the entire representation on theset of labels alone. 5



www.manaraa.com

Obviously, labels of unrestri
ted size 
an be used to en
ode any desired information.Spe
i�
ally, it is possible to en
ode the entire row i in the adja
en
y matrix of the graphin the label 
hosen for vertex i. As another 
on
rete example, adja
en
y labeling systemsof general graphs based on Hamming distan
es were studied in [Bre66, BF67℄. Spe
i�
ally,in [BF67℄ it is shown that it is possible to label the verti
es of every n-vertex graph with2n� bit labels su
h that two verti
es are adja
ent if and only if their labels are at Hammingdistan
e 4�� 4 or less of ea
h other, where � is the maximum vertex degree in the graph.However, eÆ
ien
y 
onsiderations, similar to those dis
ussed in the previous se
tionregarding routing s
hemes, di
tate the use of relatively short labels (say, of length poly-logarithmi
 in n), whi
h nevertheless allow us to dedu
e adja
en
ies eÆ
iently (say, withinpolylogarithmi
 time).EÆ
ient adja
en
y labeling s
hemes were introdu
ed in [KNR88℄. In parti
ular, a labelings
heme using 2 logn bit labels was proposed for the 
lass of trees. Given a tree T with nverti
es, 
hoose a root and asso
iate a distin
t integer `(v) 2 [1; n℄ with ea
h vertex v of T ,and then assign a vertex v with parent w the label h`(v); `(w)i. Given two labels h`(v); `(w)iand h`(v0); `(w0)i, one 
an 
he
k if the verti
es v and v0 are neighbors, as this happens ifand only if one is the parent of the other, i.e., if either `(v) = `(w0) or `(v0) = `(w). Thiss
heme was extended in [KNR88℄ to O(logn) adja
en
y labeling s
hemes for a number ofother graph families, su
h as bounded arbori
ity graphs (in
luding, in parti
ular, graphs ofbounded degree or bounded genus, e.g., planar graphs), various interse
tion-based graphs(in
luding interval graphs), and 
-de
omposable graphs.This natural idea lay dormant for over a de
ade, until interest in this dire
tion wasrevived by the observation that the ability to de
ide adja
en
y is only one of a numberof basi
 properties a representation may be required to possess. In parti
ular, anothernatural property of interest may be the ability to determine the distan
e between two verti
eseÆ
iently (say, in polylogarithmi
 time again) given their labels. This has led to the notionof distan
e labeling s
hemes, whi
h are s
hemes possessing this ability [Pel99℄. It is 
learthat distan
e labeling s
hemes with short labels are easily derivable for highly regular graph
lasses, su
h as rings, meshes, tori, hyper
ubes, and the like. It is less 
lear whether moregeneral graph 
lasses 
an be labeled in this fashion. It was shown in [Pel99℄ that the 
lass of n-vertex weighted trees with m bit edge weights enjoys an O(m logn+log2 n) distan
e labelings
heme. This s
heme is 
omplemented by a mat
hing lower bound [GPPR01℄, showing that
(m logn+log2 n) bit labels are ne
essary for this 
lass. In [GPPR01℄ the s
heme is extendedto n-vertex graphs with an r(n)-separator. It is shown that this 
lass supports a s
hemewith labels of size O(R(n) � logn), where R(n) = Plog ni=1 r(n=2i). We have R(n) � r(n) logn,and for monotone r(n) � n� with 
onstant � > 0, R(n) = O(r(n)). For bounded treewidthgraphs (in
luding trees, outerplanar graphs, series-parallel graphs, k-outerplanar graphs and
-de
omposable graphs for 
onstant k and 
), R(n) = O(logn) sin
e r(n) = O(1), and forbounded genus graphs (in
luding planar graphs), R(n) = O(r(n)) = O(pn ).Roughly speaking, the s
heme is based on building a tree-de
omposition T of the n-vertexgraph G (
f. Fig. 2). Ea
h node of T 
orresponds to a separator of G. In parti
ular, theroot of T 
orresponds to a subset S of verti
es of G su
h that jSj � r(n) and su
h that GnS
onsists of 
onne
ted 
omponents of size at most n=2. (If G is itself a tree then r(n) = 1,6



www.manaraa.com

and the singleton S is a 
enter of the tree.) Ea
h 
onne
ted 
omponent of GnS 
orrespondsto a subtree of T , so that any shortest path from u to v in G taken from di�erent subtreeshas to 
ross some verti
es of S. The label of u, L(u), 
onsists of the 
on
atenation of all thedistan
es in G between u and the verti
es of G 
ontained in all the an
estor nodes of u inT (the node 
ontaining u has at most logn an
estors). To 
ompute the distan
e between uand v, it suÆ
es to 
ompute their least 
ommon an
estor in T , say S, and then to 
omputed(u; v) = minz2S fd(u; z) + d(v; z)g. Note that to 
ompute this minimum, the labels of uand of v must en
ode the verti
es of S.

vu

L(u):
log n

r(n)

, ,d(u,1) d(u,2) d(u,3)
, ,d(u,4) d(u,5) d(u,6)4

1 2
5 6

3

31

6 9

2
T

54 7 8

Figure 2: The separator te
hnique for distan
e labeling.This s
heme is near-optimal sin
e there is a lower bound of 
(r(n)) on the label sizefor the 
lass of all the graphs having an r(n)-separator [GPPR01℄. However, for the 
lass ofplanar graphs (whi
h is a proper sub
lass of the 
lass of graphs with O(pn )-separator) thereis a spe
i�
 lower bound of 
(n1=3), leaving an intriguing (polynomial) gap. More re
ently,s
hemes with O(log2 n) bit labels that do not make use of the separator te
hnique werepresented for n-vertex interval and permutation graphs [KKP00℄ and for distan
e hereditarygraphs [GP01a℄.As observed in [KNR88℄, a 
lass of 2
(n1+�) n-vertex graphs, must use adja
en
y labels(and thus distan
e labels) whose total 
ombined length is 
(n1+�), hen
e at least one labelmust be of 
(n�) bits. Spe
i�
ally, for the 
lass of all unweighted graphs, any distan
elabeling s
heme must label some n-vertex graphs with labels of size 
(n). Conversely, thereexists a s
heme for the 
lass of arbitrary unweighted n-vertex graphs with O(n) bit labels,whi
h requires O(log logn) time to de
ode the distan
e from the labels [GPPR01℄. Hen
e�(n) bits is the optimal distan
e label length for general unweighted graphs.This raises the natural question of whether more eÆ
ient labeling s
hemes 
an be 
on-stru
ted if we abandon the ambitious goal of 
apturing exa
t information, and settle forobtaining approximate estimates. An (s; r)-approximate distan
e labeling s
heme is a dis-tan
e labeling s
heme su
h that for u; v 
oming from the same graph, the estimated distan
e~d(u; v) 
omputed by the s
heme from the labels L(u) and L(v) satis�es d(u; v) � ~d(u; v) �s � d(u; v) + r. In parti
ular, distan
e labeling s
hemes 
oin
ide with (1; 0)-approximatedistan
e labeling s
hemes.General weighted graphs were given an (8�; 0)-approximate distan
e labeling s
heme,7
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for every integer � � 1, with O(� � n1=� logn � logD) bit labels [Pel99℄, where D is theweighted diameter of the graph, and later an improved (2�� 1; 0)-approximate s
heme withO(n1=� log1�1=� n � log(nD)) bit labels [TZ01a℄. The time to de
ode the estimated distan
eis O(�). This implies a (2 logn; 0)-approximate s
heme with O(log2 n) bit labels for generalunweighted graphs. These results are 
omplemented by a lower bound in 
(n1=�) on the labelsize of (
(�); 0)-approximate s
hemes, presented independently in [TZ01a℄ and in [GKK+01℄.It is interesting to noti
e that a small variation on the quality of the estimators, saymoving from (1; 0)-approximate to (1 + o(1); 0)-approximate or to (1; O(1))-approximates
hemes, results in a signi�
ant impa
t on the label size. Trees, and more generally graphswith r(n)-separator, support a (1 + 1= logn; 0)-approximate s
heme with O(R(n) � log logn)bit labels [GKK+01℄. In parti
ular, trees enjoy O(logn � log logn) bit label (1 + 1= logn; 0)-approximate distan
e labeling s
heme. A lower bound of 
(logn � log logn) is also shownin [GKK+01℄ for any (1 + 1= logn; 0)-approximate distan
e labeling s
heme on the 
lassof trees. Re
ently, [KM01℄ proposed a logn + O(plogn ) bit labeling s
heme that allows
omputing the exa
t distan
e between two verti
es of a tree at distan
e d < plogn, thusimproving on the 2 logn bit solution of [KNR88℄ for adja
en
y labeling s
hemes in trees.A number of additional approximate distan
e labeling s
hemes are presented in [GKK+01℄,in
luding a (3; 0)-approximate s
heme with O(n1=3 logn) bit labels for planar graphs, a (1; 1)-approximate s
heme with O(logn) bit labels for interval graphs, a (1; 2)-approximate s
hemewith O(logn) bit labels for permutation and AT-free graphs, and a (1; b
=2
)-approximates
heme with O(log2 n) bit labels for 
-
hordal graphs (namely, all graphs whose longest in-du
ed 
y
le is no greater than 
). In parti
ular, it yields a (1; 1)-approximate labeling s
hemefor 
hordal graphs, to be 
ontrasted with the fa
t that every exa
t ((1; 0)-approximate)s
heme requires 
(n) bit labels on some 
hordal graphs. The question of the exa
t label size
omplexity of distan
e labeling s
heme of interval and permutation graphs is left open, withthe bounds ranging from 
(logn) to O(log2 n) [KKP00℄.Finally, a quality measure of interest is the time required for de
oding the labels and de-du
ing the information stored in them. All the approximate s
hemes presented in [GKK+01℄(for trees, planar, 
-
hordal and interval graphs and so on) require a 
onstant time 
omplex-ity for de
oding the distan
e estimator on a word-RAM 
omputer. However, an intriguingresult established in [GPPR01℄ is that there exist n-vertex graphs Gn whi
h enjoy a distan
elabeling with labels of size O(logn) on the one hand, but on the other hand, if one uses onGn labels with fewer than n=2 bits, then time exponential in n may be required for de
odingthe distan
e. A similar result is obtained therein for planar graphs.4 Informative Lo
alized Labeling S
hemesRouting, adja
en
y and distan
e labeling s
hemes have several 
ommon features. Mostimportantly, they all address the general question of developing label-based network repre-sentations that allow retrieving useful information about arbitrary fun
tions or substru
turesin a graph in a lo
alized manner, i.e., using only the lo
al pie
es of information availableto, or asso
iated with, the verti
es under inspe
tion, and not having to sear
h for addi-8
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tional global information. We refer to su
h representations as informative labeling s
hemes,formally des
ribed in [Pel00b℄.To illustrate this 
on
ept with respe
t to additional fun
tions, let us 
on
entrate on the
lass of rooted trees. In addition to �nding out whether two given verti
es v and w areadja
ent, or what is the distan
e between them, one may be interested in many other pie
esof information 
on
erning these verti
es. For example, in some 
ases it may be useful toknow if v is an an
estor (or a des
endant) of w. It is rather easy to en
ode the an
estryrelation in a tree with 2 logn bit labels using interval-based s
hemes (
f. [SK85℄). It turns outthat an
estor queries 
an be handled by a s
heme using logn+O(plogn ) bit labels [TZ01,KM01a℄. More sophisti
ated labeling s
hemes allow us to 
ombine parent and an
estorqueries with 2 logn+O(log logn) bit labels [KM01a℄. Moreover, queries 
an be answered in
onstant time on a word-RAM 
omputer.Another example for a pie
e of non-numeri
 information that may be required is theleast 
ommon an
estor of v and w. Standard solutions [HT84, SV88℄ 
an answer su
hqueries in 
onstant time with suitable prepro
essing of the tree, but 
annot be applied in alo
alized 
omputation setting., as they require some a

esses to a global table of O(n) items.In [Pel00b℄, it is shown that the identi�er of the least 
ommon an
estor 
an be found using alabeling s
heme with O(log2 n) bit labels. This s
heme is asymptoti
ally optimal if verti
eshave freely 
hosen their own identi�er. However, if it is only required to return the labelof the least 
ommon an
estor (that is, all the vertex identi�ers 
onsist of the labels issuedby the labeling s
heme), then it 
an be done with O(logn) bit labels [AGKR01℄. Anotherrelated fun
tion is the separation level of two verti
es of a rooted tree, de�ned as the depthof their 
ommon an
estor. This fun
tion is given in [Pel00b℄ a labeling s
heme similar tothe one for distan
e labeling, with (asymptoti
ally optimal) O(log2 n) bit labels. As anadditional example, labeling s
hemes for 
ow and 
onne
tivity were studied in [KKKP01℄.An (asymptoti
ally optimal) 
ow labeling s
heme using O(logn�log!) bit labels is presentedfor general n-vertex graphs with maximum (integral) 
apa
ity !. For edge-
onne
tivity, thisyields a tight bound of �(log2 n) bits. Also, a k-vertex 
onne
tivity labeling s
heme isgiven for general n-vertex graphs using O(logn) bit labels for �xed k. Finally, a lowerbound of 
(k logn) is established for k-vertex 
onne
tivity on n-vertex graphs where k ispolylogarithmi
 in n.The types of lo
alized information to be en
oded by an informative labeling s
heme arenot limited to binary relations. An example for information involving three verti
es v, wand u is �nding their 
enter, namely, the unique vertex z su
h that the paths 
onne
ting itto v, w and u are edge disjoint. More generally, for any subset of verti
es S in a weightedgraph, one may be interested in inferring w(S), the weight of their Steiner tree (namely, thelightest tree spanning them), based on their labels. It is easy to verify that an exa
t Steinerlabeling s
heme for the the 
lass of n-vertex graph requires 
(n) bit labels. However, the
lass of arbitrary n-vertex graphs with m bit edge weights admit a O(logn)-multipli
ativeapproximate Steiner labeling s
heme using O(m log2 n + log3 n) bit labels [Pel00b℄. For n-vertex trees with m bit edge weights, there exists an exa
t s
heme with O(m logn+ log2 n)bit labels, whi
h is asymptoti
ally optimal [Pel00b℄.Revisiting 
ompa
t routing s
hemes as informative labeling s
hemes re
ently yielded9
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some improvements for routing problem on trees. Informally speaking, the routing problem
an be presented as requiring us to assign two kinds of labels to every vertex of a graph.The �rst is the address of the vertex, whereas the se
ond label is a data stru
ture 
alledthe lo
al routing table. The labels are assigned su
h a way that at every sour
e vertex vand given the address of any destination vertex u, one 
an de
ide the �rst edge (or anidenti�er of that edge) outgoing of v that leads to u (say, through a shortest path). Thede
ision must be taken lo
ally in v, based solely on the two labels of v and with the addresslabel of u. For instan
e, a labeling for trees that uses 3 logn bits for the addresses andO(minfd logn;pn logng) bits for the lo
al routing table, where d is the degree of the vertex,is 
onstru
ted in [Cow01℄. (This improves on the labeling presented in Se
tion 2 for largedegree verti
es). In [EGP98℄ it is shown that every routing s
heme that sele
ts addressesin the range [1; n℄ has an 
(pn ) bit lo
al routing table for some n-vertex trees. Hen
e byin
reasing the address size, a variant of this problem would be to 
onsider routing labels su
hthat the message 
an be routed between v to u relying solely on their label (and possibly thelabels of the intermediate verti
es along the route) without any routing tables. This leadsto the notion of routing labeling s
hemes. Obviously su
h a labeling 
an be obtained from astandard routing s
heme by 
on
atenating in a single label, for every vertex v, the addressof v and its lo
al routing table. Surprisingly, n-vertex trees have routing labeling s
hemeswith only 
 logn bit labels [FG01℄, for a small 
onstant 
. It is even proved in [TZ01℄ thatthe 
onstant 
 
an be redu
ed to 
 = 1 + O(1= log logn). Combined with the 
(pn ) lowerbound of [EGP98℄, this emphasizes that a variation of an additive term of O(logn= log logn)bits on the size of the addresses plays an important role on the size of the routing table.At this stage, let us dis
uss potential appli
ations for informative labeling s
hemes. Itseems likely that labeling s
hemes may prove useful for various appli
ations in the 
ontextsof 
ommuni
ation networks and distributed proto
ols. The relevan
e of distan
e labelings
hemes in the 
ontext of 
ommuni
ation networks has been pointed out in [Pel99℄, andillustrated by dis
ussing the potential appli
ation of su
h labeling s
hemes to distributed
onne
tion setup pro
edures in 
ir
uit-swit
hed networks. Some other problems where itseems that distan
e labeling s
hemes may be useful in
lude memory-free routing s
hemes,bounded (\time-to-live") broad
ast proto
ols, topology update me
hanisms et
. For spe
i�

lasses of graphs, like rooted trees, it is shown in [AKM01℄ how to use an
estor labelings
hemes to optimize queries on large database with XML sear
h engines. It is also plausiblethat other types of informative labeling s
hemes may prove useful for other appli
ations. Forinstan
e, one 
an envision using Steiner labeling s
hemes as a tool for optimizing multi
asts
hedules and sele
tion of subtrees for group 
ommuni
ation, and potentially even for 
ertaininformation representation problems on the Web. Moreover, one may expe
t that suitableinformative labeling s
hemes will be appli
able in entirely di�erent appli
ation domains aswell, in
luding for instan
e 
omputational geometry (in the 
ontext of Eu
lidean graphs) and
ombinatorial optimization in general, by viewing a vertex labeling as a \ni
e," i.e., easilymanagable, representation of the graphLet us 
on
lude with a brief dis
ussion of future prospe
ts. As observed along this paper,both the quality and the 
ost of an informative labeling s
heme depend on two 
entralfa
tors: the type of information handled by the s
heme, and the 
lass of networks for whi
h10
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the s
heme is designed. Nevertheless, there is hope that general and uniform algorithmi
 anddata-stru
turing te
hniques will emerge that will fa
ilitate the design of informative labelings
hemes for many types of information, or even the design of general s
hemes 
apable ofen
oding a group of information types together, for instan
e, routing and distan
e.Finally, the information types handled by the labeling s
heme may not ne
essarily be di-re
tly related to the topology of the graph itself. Rather, it may be derived from various othertypes of (external) data, stored in its verti
es of the network. The idea is to eventually beable to 
ome up with data stru
tures that will allow \lo
al" dedu
tions on the basis of smallparts of the data, without having to inspe
t the entire data stru
ture. Con
eivably, this maylead to the development of abstra
t types of \fragmented" (or \lo
alized") data stru
tures,whose dependen
ies on the topology are only partial, giving rise to many interesting andnew problems.

11
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