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Abstract

This survey concerns the role of data structures for compactly storing and repre-
senting various types of information in a localized and distributed fashion. Traditional
approaches to data representation are based on global data structures, which require
access to the entire structure even if the sought information involves only a small and
local set of entities. In contrast, localized data representation schemes are based on
breaking the information into small local pieces, or labels, selected in a way that allows
one to infer information regarding a small set of entities directly from their labels,
without using any additional (global) information. The survey focuses on combinato-
rial and algorithmic techniques, and covers complexity results on various applications,
including compact localized schemes for message routing in communication networks,
and adjacency and distance labeling schemes.
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1 Introduction

Efficient data structures are at the heart of any data-manipulating computer system, and
this fundamental fact is just as valid for distributed systems. Some distributed programming
languages support distributed data structures explicitly (cf. [CGL86]), and many distributed
algorithms use such structures (explicitly or implicitly) for their data-management purposes.
But more importantly, such structures are in many cases constructed not as part of any par-
ticular algorithm but for direct use as the building blocks of various storage and retrieval
mechanisms, such as distributed dictionaries, name servers in communication networks, bul-
letin boards, resource allocation managers and the like [Ree78, OD81, FWB85, LEHS85,
Ter87, MV88, GS89]. The function common to all of these mechanisms is supplying facilities
for storing accumulated information in the system and making it available to potential users
throughout the system.

The topic of distributed data structures is rather wide, and the distributed setting raises
several issues that are not encountered in the usual, shared-memory sequential setting (cf.
[Pel90]). In particular, this topic touches upon several large research areas, such as ordi-
nary data structures and data types, distributed database, and concurrency control theory
(cf. [LM79, Her84, Wei84, BHG86, Pap86, Her87]). We shall make no attempt to review the
relevant literature here, nor shall we address the area of concurrent data structures, which
refers to data structures stored in common (shared) memory but accessible by many pro-
cesses concurrently, cf. [BS79, Ell80a, ElI80b, KL.80, ML84, Man86, BB87, PK87, RK88§],
or the area of designing special purpose VLSI machines for implementing data structures,
cf. [Lei79, ORS82, DS85, SS85, CCIR&6, DS87, OB87, SL87, AK93].

Rather, in this paper we shall restrict ourselves to dealing with one specific aspect of
distributed data structures, namely, the relationships between the topology of the under-
lying communication network (and its graph-theoretic properties) and efficient schemes for
organizing and distributing data in the various sites. When the communication network
underlying the system is based on a network of arbitrary topology, various graph-theoretic
parameters become significant in determining the appropriate way for distributing the data
and the resulting complexity.

Our primary concern is to maintain the data structure using reasonable overall space
requirements. However, no less important is the need to balance the memory loads over
the sites of the system. Future systems are expected to carry enormous loads of data, and
a single site can hardly be expected to function as the sole storing site for a large data
structure. It is therefore desirable to be able to distribute the data in several sites and
balance the memory requirements of the data structure between all sites in the network.
Such a geographic distribution of data among the different network sites is also dictated by
considerations of access speed and reliability.

This survey discusses combinatorial and algorithmic techniques related to these issues,
and covers complexity results on various applications. In particular, we will focus on two
specific problems which will be used for illustrating the main issues and ideas involved. The
first of these problems concerns the design of compact localized schemes for message routing
in communication networks, and the second deals with adjacency and distance labeling
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schemes, and more generally, informative localized labeling schemes. For more detailed
presentation of various aspects of these problems see [Gav00, Gav01, Pel00a].

2 Compact Localized Structures for Routing

Delivering messages between pairs of processors is a basic activity of any distributed com-
munication network. This task is performed using a routing scheme, which is a mechanism
for routing messages in the network. The routing mechanism can be invoked at any origin
vertex and be required to deliver a message to some destination vertex.

Using edge lengths to reflect transmission costs and delays, it is naturally desirable to
route messages along paths that are as short as possible. A straightforward approach to
achieving this goal is to store a complete routing table in each vertex v in the network,
specifying for each destination u the first edge (or an identifier of that edge, indicating
the output port) along some shortest path from v to u. This approach clearly guarantees
optimal routes, but may be too expensive for large systems since it requires a total of
O(n*logn) memory bits in an n-processor network. Thus, an important problem in large
scale communication networks is the design of routing schemes that produce efficient routes
and have relatively low memory requirements. The efficiency of a routing scheme is measured
in terms of its stretch, namely, the maximum ratio between the length of a route produces
by the scheme for some pair of processors, and their distance.

As a basic example, let us describe an efficient method, known as interval routing scheme
(IRS) for storing shortest path routing information in a tree network. Start by traversing
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7 10 <4,[5,8]:1,[9,10]:2,[11,3]:3>
Figure 1: An interval routing for 7', and the data structure for the vertex 4.

the n-node tree T' in depth first search fashion [Tar72|, associating with each vertex v an
address label ¢(v) € [1,n] cf. Fig. 1. Then, associate with each outgoing edge (v,u) of v the
set I(v,u) of labels of all the vertices w with the property that the route from v to w starts
with the edge (v, u). By construction, the labels contained in (v, u) are consecutive (modulo
n). Hence, to represent I(v,u) in v’s memory it suffices to store its interval boundaries, at
a cost of O(logn) bits per set. Overall, the routing table of v is a data structure of the
form (((v), I(v,uy):p1, (v, ug):pa, ..., I(v,uq):pg) where pi,po,...,pq are respectively the
output port numbers leading to the neighbors uy, us, ..., us (see Fig. 1 for the vertex labeled
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4). Therefore the size of the routing table for v is O(dlogn) bits, where d is the degree of
v. This should be compared with the O(nlogd) bit bound for a standard routing table. An
important feature of this method is the assignment of both vertex and edge labels. Routing
a message from a source v to a destination w is done by searching for the interval I(v, u;) in
v’s table such that ¢(w) € I(v,u;) (implying that the message has to include the destination
label ¢(w) in its header), and then forwarding the message through output port p; to the
neighbor u;. This local computation is then repeated at any intermediate node along the
route. This search can be performed using logn comparisons by sorting the intervals or in
O(loglogn) time using more sophisticated data structures [vBoas77]. Observe that the local
memory requirement increases with the degree of the vertex (in Section 4 we discuss other
labeling schemes aiming at overcoming the problem of large degree vertices), but the total
memory requirement is O(nlogn) bits only.

The interval routing scheme for trees is due to [SK85]. This scheme can be applied rather
efficiently to certain restricted graph families, and it has also been extended later to a wider
variety of networks, cf. [vLT87, FJ89, Fre93, FGS96, FG98|. When considering interval
routing schemes for classes of graphs other than trees, a natural question is to identify which
graphs admit interval routing along shortest paths [FG94, NS96, Fla97, EMZ97|. Another
natural extension is to allow using more than one interval on each edge, raising the question of
how many intervals are necessary to ensure shortest path routing, and how such a scheme can
be implemented [FvLS98, GGI8, GP9I8, GP99]. For surveys of the many recent developments
in this area see [vLT94, Gav00].

The problem of efficiency-memory tradeoffs for routing schemes was first raised in [KK77],
which proposed the general approach of hierarchically clustering a network into x levels
and using the resulting structure for routing. The total memory used by the scheme is
O(n'*'/% . logn). However, in order to apply the method of [KK77] one needs to make
some fairly strong assumptions regarding the existence of a certain partition of the network.
Several variations and/or improvements were studied later, cf. [KK80, Per82, Sun82].

Most subsequent work on the problem has focused on solutions for special classes of
network topologies. Shortest path (i.e., stretch factor 1) routing schemes with total memory
requirement O(nlogn) were designed for simple topologies like trees [SK85], unit-cost rings,
complete networks and grids [vLT86, vLT87] and networks at the lower end of a hierarchy
(beginning with the outerplanar networks) identified in [FJ88]. The problem of designing
memory-efficient near-optimal routing schemes was cast in a theoretical formulation in [FJ86,
FJ88, FJ89], where it was also given precise solutions for various graph classes up to and
including planar graphs. Near-optimal stretched routing schemes were constructed in [FJ89,
FJ90| for c-decomposable networks, for constant ¢, and for planar networks. The schemes
for c-decomposable networks guarantee stretch factor ranging between 2 and 3 (specifically,
1+ 2/a where a > 1 is the positive root of the equation a/(“*V/2l — ¢ — 2 = 0) and have
total memory requirement O(c?logc - nlog®n). The schemes for planar networks guarantee
stretch factor 7 and have total memory requirement ()(%n”re -logn) bits for any constant
0<ex< % A crucial step in constructing these routing schemes is assigning names to the
vertices as part of the routing scheme. The above optimal schemes use O(logn) bit labels,
and the routing mechanism needs to modify the header during the message propagation.
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The schemes of [FJ90] for c-decomposable networks use O(cloge - logn) bit names and
the schemes of [FJ89, FJ90] for planar networks use O(Llogn) bit names and rewritable
headers. Recently, [GH99] have constructed new routing schemes for planar graphs with
optimal stretch 1. Based on book embeddings, these schemes use label names € [1,n] and
work with non rewritable headers. The memory bound is 8n + o(n) bits per vertex. The
schemes can be extended to g genus graphs with nlog g + O(n) memory bits per vertex. As
another example, the construction of 3-spanners for the family of chordal graphs described
in [PS89] can be used to construct routing schemes for these graphs with stretch factor 3
and O(nlog?n) bits of memory in total. For Euclidean networks, namely, networks whose
sites are embedded in the 2-dimensional plane with Euclidean distances, recent papers have
dealt with proposing efficient designs for compact routing schemes, based on compass routing
methods (cf. [BCSW98, KSU99]) or efficient spanner constructions [HP00].

The problem of constructing compact routing schemes for arbitrary unweighted networks
was studied in [PU89], which presents a family of hierarchical routing schemes (for every fixed
integer k > 1) that guarantee stretch O(x) and require storing a total of O (K2 -plts  log 77)
bits of routing information in the network. Just as for the IRS approach and the routing
schemes of [FJ89, FJ90], the schemes of [PU89] require assigning suitable names to the ver-
tices. these names are of size O(log®n) bit. However, the headers attached to the messages
require only O(logn) bits. Furthermore, these schemes (as well as most earlier approaches,
such as IRS and the schemes of [FJ89, FJ90]) have the disadvantage that the routing infor-
mation is not balanced on the set of vertices. In the worst-case, some vertices may require
Q(nlogn) bits of memory.

The solution of [PU89| was later generalized in a number of ways, and various qualities
of the resulting schemes were improved in [PU87, ABLP89, ABLP90, AP92, Pel93|. For
instance, the schemes were extended to weighted graphs, they were modified to work in
a setting where vertices can freely select their own names or routing labels, they were pro-
vided with efficient and distributed preprocessing procedures and so on. These developments
parallel a chain of successive improvements in the corresponding cluster-based representa-
tions used by the schemes. Recent developments concerning compact routing schemes with
low stretch (mainly integral stretches < 5) are presented in [KKU95, FG97, GG97, NO97,
EGP98, CG00, Cow01], and also in [TZ01] for higher stretches. See [Gav01, Pel00a] for more
detailed overviews.

Lower bounds for the space-efficiency tradeoff of routing schemes were studied in [PUS89,
FG95, FG96, GP96, BHV96, KK96, GG97]. More precisely, in [PU89] it is shown that every
routing strategy that guarantees an s stretched routing scheme for every n-vertex graph
must provide at least a total of 20!V ifferent routing schemes. Thus no routing
strategy can guarantee for every graph a routing scheme with a stretch factor O(k) and
o(n'*1/%) bits of total memory. For the case of optimal stretch 1, it is shown in [GP96] that
for every shortest path routing strategy and for every d such that 3 < d < (1 — €)n, there
exists a worst-case graph of degree bounded by d on which the total memory requirement is
Q(n?logd), matching with the memory requirements of standard routing tables. Both lower
bounds assume that routes and O(logn) bit label names can be computed and optimized by
the routing strategy in order to decrease the memory requirement.
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The issues of name independence and balancing the memory requirements were first raised
in [ABLP89]. The schemes proposed in [ABLP89, Pel93| are name-independent and apply
to arbitrary weighted networks. However, they have an inferior efficiency-space tradeoff.
For instance, the schemes of [ABLP89], for k > 1, use O(x - n'/* - logn) bits of memory
per vertex and guarantee a stretch of O(x*-9%). The tradeoff was finally improved by the
schemes of [AP92], which are simpler, and possess the additional attractive features discussed
above. The stretch is O(x?) and the memory requirement is O(x-n'/*log” n -log D) bits per
vertex, where D is the weighted diameter of the network. In fact, the tradeoff obtained in
the schemes of [AP92] is still not optimal, and it is conceivably possible to reduce the stretch
factor of the routing schemes from O(k?) to O(k). Several other types of routing schemes
for general networks are presented in [PU87, ABLP90, TZ01].

It is worth noting that the scheme of [ABLP89] has one additional advantage, namely, its
memory complexity is independent of the range of the edge costs, or the network’s diameter
(or put another way, the routing algorithm is “purely combinatorial”). Finally, it has been
proven in [EGP98] that, whatever the stretch bound is, every name-independent routing
strategy that guarantees less than O(y/n ) bits per vertex needs rewritable headers. (Actually
it is not difficult to see that the memory bound can be pushed to ©(nlogn) bits.) So, the
routing protocols of [ABLP89] and [AP92] that, in essence, proceed in O(k) routing phases
(which need to be memorized in the headers) cannot be simplified below a certain point.

Other related work deals with routing with succinct routing tables. The case of dynamic
networks is dealt with in [AGR89] in the limited setting of networks whose topology is a
tree, and the topological changes are restricted to growing (i.e., new edges and vertices are
occasionally added to the network). And recently, the routing problem was dealt with in the
context of the new generation of ATM and optical networks [DKKP95].

3 Adjacency and Distance Labeling Schemes

Most traditional centralized approaches to the problem of network representation are based
on storing adjacency information using some kind of a data structure, e.g., an adjacency
matrix. Such representation enables one to decide, given the indices of two vertices, whether
or not they are adjacent in the network, simply by looking at the appropriate entry in the
table. However, note that (a) this decision cannot be made in the absence of the table,
and (b) the indices themselves contain no useful information, and they serve only as “place
holders”, or pointers to entries in the table, which forms a global representation of the
network.

In contrast, for a distributed computing setting we are interested in more informative
and localized schemes for representing the network. In particular, labeling schemes are based
on the idea of associating with each vertex a label selected in a such way, that will allow us
to infer the adjacency of two vertices directly from their labels, without using any additional
information sources. Hence in essence, this rather extreme approach to the network repre-
sentation problem discards all other components, and bases the entire representation on the
set of labels alone.
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Obviously, labels of unrestricted size can be used to encode any desired information.
Specifically, it is possible to encode the entire row 7 in the adjacency matrix of the graph
in the label chosen for vertex 7. As another concrete example, adjacency labeling systems
of general graphs based on Hamming distances were studied in [Bre66, BF67]. Specifically,
in [BF67] it is shown that it is possible to label the vertices of every n-vertex graph with
2nA bit labels such that two vertices are adjacent if and only if their labels are at Hamming
distance 4A — 4 or less of each other, where A is the maximum vertex degree in the graph.

However, efficiency considerations, similar to those discussed in the previous section
regarding routing schemes, dictate the use of relatively short labels (say, of length poly-
logarithmic in n), which nevertheless allow us to deduce adjacencies efficiently (say, within
polylogarithmic time).

Efficient adjacency labeling schemes were introduced in [KNR88|. In particular, a labeling
scheme using 2logn bit labels was proposed for the class of trees. Given a tree T with n
vertices, choose a root and associate a distinct integer £(v) € [1,n] with each vertex v of T,
and then assign a vertex v with parent w the label (¢(v), ¢(w)). Given two labels (¢(v), £(w))
and (¢(v"),f(w")), one can check if the vertices v and v’ are neighbors, as this happens if
and only if one is the parent of the other, i.e., if either /(v) = ¢(w') or £(v") = f(w). This
scheme was extended in [KNR88] to O(logn) adjacency labeling schemes for a number of
other graph families, such as bounded arboricity graphs (including, in particular, graphs of
bounded degree or bounded genus, e.g., planar graphs), various intersection-based graphs
(including interval graphs), and c-decomposable graphs.

This natural idea lay dormant for over a decade, until interest in this direction was
revived by the observation that the ability to decide adjacency is only one of a number
of basic properties a representation may be required to possess. In particular, another
natural property of interest may be the ability to determine the distance between two vertices
efficiently (say, in polylogarithmic time again) given their labels. This has led to the notion
of distance labeling schemes, which are schemes possessing this ability [Pel99]. Tt is clear
that distance labeling schemes with short labels are easily derivable for highly regular graph
classes, such as rings, meshes, tori, hypercubes, and the like. It is less clear whether more
general graph classes can be labeled in this fashion. It was shown in [Pel99] that the class of n-
vertex weighted trees with m bit edge weights enjoys an O(m log n+log®n) distance labeling
scheme. This scheme is complemented by a matching lower bound [GPPRO1], showing that
Q(mlogn+log” n) bit labels are necessary for this class. In [GPPRO1] the scheme is extended
to n-vertex graphs with an r(n)-separator. It is shown that this class supports a scheme
with labels of size O(R(n) - logn), where R(n) = 128" r(n/2). We have R(n) < r(n)logn,
and for monotone r(n) > n® with constant ¢ > 0, R(n) = O(r(n)). For bounded treewidth
graphs (including trees, outerplanar graphs, series-parallel graphs, k-outerplanar graphs and
c-decomposable graphs for constant & and ¢), R(n) = O(logn) since r(n) = O(1), and for
bounded genus graphs (including planar graphs), R(n) = O(r(n)) = O(y/n).

Roughly speaking, the scheme is based on building a tree-decomposition 7" of the n-vertex
graph G (cf. Fig. 2). Each node of T corresponds to a separator of G. In particular, the
root of T' corresponds to a subset S of vertices of G such that |S| < r(n) and such that G'\ S
consists of connected components of size at most n/2. (If G is itself a tree then r(n) = 1,
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and the singleton S is a center of the tree.) Each connected component of G'\ S corresponds
to a subtree of T', so that any shortest path from u to v in G taken from different subtrees
has to cross some vertices of S. The label of u, L(u), consists of the concatenation of all the
distances in G between u and the vertices of G contained in all the ancestor nodes of u in
T (the node containing v has at most logn ancestors). To compute the distance between u
and v, it suffices to compute their least common ancestor in T, say S, and then to compute
d(u,v) = min,egs {d(u, z) + d(v, z)}. Note that to compute this minimum, the labels of u
and of v must encode the vertices of S.

L 23 L) [4dud4),5 d(us),6 dus)
3 1d(u,1),2 d(u,2), 3 d(u3) ogn

A
Y

r(n

Figure 2: The separator technique for distance labeling.

This scheme is near-optimal since there is a lower bound of Q(r(n)) on the label size
for the class of all the graphs having an r(n)-separator [GPPRO1]. However, for the class of
planar graphs (which is a proper subclass of the class of graphs with O(y/n )-separator) there
is a specific lower bound of Q(n'/?), leaving an intriguing (polynomial) gap. More recently,
schemes with O(log?n) bit labels that do not make use of the separator technique were
presented for n-vertex interval and permutation graphs [KKP00] and for distance hereditary
graphs [GP01a].

As observed in [KNR88]|, a class of 290"") novertex graphs, must use adjacency labels
(and thus distance labels) whose total combined length is Q(n'*¢), hence at least one label
must be of Q(n®) bits. Specifically, for the class of all unweighted graphs, any distance
labeling scheme must label some n-vertex graphs with labels of size Q(n). Conversely, there
exists a scheme for the class of arbitrary unweighted n-vertex graphs with O(n) bit labels,
which requires O(loglogn) time to decode the distance from the labels [GPPRO1]. Hence
©(n) bits is the optimal distance label length for general unweighted graphs.

This raises the natural question of whether more efficient labeling schemes can be con-
structed if we abandon the ambitious goal of capturing exact information, and settle for
obtaining approzimate estimates. An (s,r)-approzimate distance labeling scheme is a dis-
tance labeling scheme such that for u, v coming from the same graph, the estimated distance
d(u,v) computed by the scheme from the labels L(u) and L(v) satisfies d(u,v) < d(u,v) <
s - d(u,v) + r. In particular, distance labeling schemes coincide with (1,0)-approximate
distance labeling schemes.

General weighted graphs were given an (8k,0)-approximate distance labeling scheme,

7
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for every integer k > 1, with O(k - n'/%logn - log D) bit labels [Pel99], where D is the
weighted diameter of the graph, and later an improved (2x — 1, 0)-approximate scheme with
O(n'/*log' "/* n - log(nD)) bit labels [TZ01a]. The time to decode the estimated distance
is O(k). This implies a (2logn, 0)-approximate scheme with O(log® n) bit labels for general
unweighted graphs. These results are complemented by a lower bound in ©(n'/%) on the label
size of (Q(k), 0)-approximate schemes, presented independently in [TZ01a] and in [GKK™T01].

It is interesting to notice that a small variation on the quality of the estimators, say
moving from (1,0)-approximate to (1 + o(1),0)-approximate or to (1,0(1))-approximate
schemes, results in a significant impact on the label size. Trees, and more generally graphs
with r(n)-separator, support a (1 + 1/logn, 0)-approximate scheme with O(R(n) - loglogn)
bit labels [GKKT01]. In particular, trees enjoy O(logn - loglogn) bit label (1 + 1/logn, 0)-
approximate distance labeling scheme. A lower bound of Q(logn - loglogn) is also shown
in [GKK*01] for any (1 + 1/logn,0)-approximate distance labeling scheme on the class
of trees. Recently, [KMO1] proposed a logn + O(y/logn) bit labeling scheme that allows
computing the exact distance between two vertices of a tree at distance d < /logn, thus
improving on the 2logn bit solution of [KNRS8S8] for adjacency labeling schemes in trees.

A number of additional approximate distance labeling schemes are presented in [GKK™01],
including a (3, 0)-approximate scheme with O(n!/31logn) bit labels for planar graphs, a (1, 1)-
approximate scheme with O(logn) bit labels for interval graphs, a (1, 2)-approximate scheme
with O(logn) bit labels for permutation and AT-free graphs, and a (1, |¢/2])-approximate
scheme with O(log”n) bit labels for c-chordal graphs (namely, all graphs whose longest in-
duced cycle is no greater than ¢). In particular, it yields a (1, 1)-approximate labeling scheme
for chordal graphs, to be contrasted with the fact that every exact ((1,0)-approximate)
scheme requires €2(n) bit labels on some chordal graphs. The question of the exact label size
complexity of distance labeling scheme of interval and permutation graphs is left open, with
the bounds ranging from Q(logn) to O(log” n) [KKPO0O0].

Finally, a quality measure of interest is the time required for decoding the labels and de-
ducing the information stored in them. All the approximate schemes presented in [GKK*01]
(for trees, planar, c-chordal and interval graphs and so on) require a constant time complex-
ity for decoding the distance estimator on a word-RAM computer. However, an intriguing
result established in [GPPRO1] is that there exist n-vertex graphs G,, which enjoy a distance
labeling with labels of size O(logn) on the one hand, but on the other hand, if one uses on
G, labels with fewer than n/2 bits, then time exponential in n may be required for decoding
the distance. A similar result is obtained therein for planar graphs.

4 Informative Localized Labeling Schemes

Routing, adjacency and distance labeling schemes have several common features. Most
importantly, they all address the general question of developing label-based network repre-
sentations that allow retrieving useful information about arbitrary functions or substructures
in a graph in a localized manner, i.e., using only the local pieces of information available
to, or associated with, the vertices under inspection, and not having to search for addi-
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tional global information. We refer to such representations as informative labeling schemes,
formally described in [PelOOb].

To illustrate this concept with respect to additional functions, let us concentrate on the
class of rooted trees. In addition to finding out whether two given vertices v and w are
adjacent, or what is the distance between them, one may be interested in many other pieces
of information concerning these vertices. For example, in some cases it may be useful to
know if v is an ancestor (or a descendant) of w. It is rather easy to encode the ancestry
relation in a tree with 2 logn bit labels using interval-based schemes (cf. [SK85]). Tt turns out
that ancestor queries can be handled by a scheme using logn + O(y/logn ) bit labels [TZ01,
KMO01la]. More sophisticated labeling schemes allow us to combine parent and ancestor
queries with 2logn + O(loglogn) bit labels [KMO01a]. Moreover, queries can be answered in
constant time on a word-RAM computer.

Another example for a piece of non-numeric information that may be required is the
least common ancestor of v and w. Standard solutions [HT84, SV88] can answer such
queries in constant time with suitable preprocessing of the tree, but cannot be applied in a
localized computation setting., as they require some accesses to a global table of O(n) items.
In [Pel00b], it is shown that the identifier of the least common ancestor can be found using a
labeling scheme with ()(log2 n) bit labels. This scheme is asymptotically optimal if vertices
have freely chosen their own identifier. However, if it is only required to return the label
of the least common ancestor (that is, all the vertex identifiers consist of the labels issued
by the labeling scheme), then it can be done with O(logn) bit labels [AGKRO01]. Another
related function is the separation level of two vertices of a rooted tree, defined as the depth
of their common ancestor. This function is given in [Pel00b] a labeling scheme similar to
the one for distance labeling, with (asymptotically optimal) O(log®n) bit labels. As an
additional example, labeling schemes for flow and connectivity were studied in [KKKPO1].
An (asymptotically optimal) flow labeling scheme using O(log n-logw) bit labels is presented
for general n-vertex graphs with maximum (integral) capacity w. For edge-connectivity, this
yields a tight bound of ©(log?n) bits. Also, a k-vertex connectivity labeling scheme is
given for general n-vertex graphs using O(logn) bit labels for fixed k. Finally, a lower
bound of Q(klogn) is established for k-vertex connectivity on n-vertex graphs where k is
polylogarithmic in n.

The types of localized information to be encoded by an informative labeling scheme are
not limited to binary relations. An example for information involving three vertices v, w
and wu is finding their center, namely, the unique vertex z such that the paths connecting it
to v, w and u are edge disjoint. More generally, for any subset of vertices S in a weighted
graph, one may be interested in inferring w(S), the weight of their Steiner tree (namely, the
lightest tree spanning them), based on their labels. It is easy to verify that an exact Steiner
labeling scheme for the the class of n-vertex graph requires 2(n) bit labels. However, the
class of arbitrary n-vertex graphs with m bit edge weights admit a O(logn)-multiplicative
approximate Steiner labeling scheme using O(mlog”n + log® n) bit labels [Pel00b]. For n-
vertex trees with m bit edge weights, there exists an exact scheme with O(m logn + log” n)
bit labels, which is asymptotically optimal [Pel00Ob].

Revisiting compact routing schemes as informative labeling schemes recently yielded
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some improvements for routing problem on trees. Informally speaking, the routing problem
can be presented as requiring us to assign two kinds of labels to every vertex of a graph.
The first is the address of the vertex, whereas the second label is a data structure called
the local routing table. The labels are assigned such a way that at every source vertex v
and given the address of any destination vertex u, one can decide the first edge (or an
identifier of that edge) outgoing of v that leads to u (say, through a shortest path). The
decision must be taken locally in v, based solely on the two labels of v and with the address
label of u. For instance, a labeling for trees that uses 3logn bits for the addresses and
O(min {dlogn,/nlogn}) bits for the local routing table, where d is the degree of the vertex,
is constructed in [Cow01]. (This improves on the labeling presented in Section 2 for large
degree vertices). In [EGP98] it is shown that every routing scheme that selects addresses
in the range [1,n] has an Q(y/n) bit local routing table for some n-vertex trees. Hence by
increasing the address size, a variant of this problem would be to consider routing labels such
that the message can be routed between v to u relying solely on their label (and possibly the
labels of the intermediate vertices along the route) without any routing tables. This leads
to the notion of routing labeling schemes. Obviously such a labeling can be obtained from a
standard routing scheme by concatenating in a single label, for every vertex v, the address
of v and its local routing table. Surprisingly, n-vertex trees have routing labeling schemes
with only clogn bit labels [FGO1], for a small constant ¢. It is even proved in [TZ01] that
the constant ¢ can be reduced to ¢ = 14 O(1/loglogn). Combined with the Q(y/n) lower
bound of [EGP98|, this emphasizes that a variation of an additive term of O(logn/loglogn)
bits on the size of the addresses plays an important role on the size of the routing table.

At this stage, let us discuss potential applications for informative labeling schemes. It
seems likely that labeling schemes may prove useful for various applications in the contexts
of communication networks and distributed protocols. The relevance of distance labeling
schemes in the context of communication networks has been pointed out in [Pel99], and
illustrated by discussing the potential application of such labeling schemes to distributed
connection setup procedures in circuit-switched networks. Some other problems where it
seems that distance labeling schemes may be useful include memory-free routing schemes,
bounded (“time-to-live”) broadcast protocols, topology update mechanisms etc. For specific
classes of graphs, like rooted trees, it is shown in [AKMO1] how to use ancestor labeling
schemes to optimize queries on large database with XML search engines. It is also plausible
that other types of informative labeling schemes may prove useful for other applications. For
instance, one can envision using Steiner labeling schemes as a tool for optimizing multicast
schedules and selection of subtrees for group communication, and potentially even for certain
information representation problems on the Web. Moreover, one may expect that suitable
informative labeling schemes will be applicable in entirely different application domains as
well, including for instance computational geometry (in the context of Euclidean graphs) and
combinatorial optimization in general, by viewing a vertex labeling as a “nice,” i.e., easily
managable, representation of the graph

Let us conclude with a brief discussion of future prospects. As observed along this paper,
both the quality and the cost of an informative labeling scheme depend on two central
factors: the type of information handled by the scheme, and the class of networks for which
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the scheme is designed. Nevertheless, there is hope that general and uniform algorithmic and
data-structuring techniques will emerge that will facilitate the design of informative labeling
schemes for many types of information, or even the design of general schemes capable of
encoding a group of information types together, for instance, routing and distance.

Finally, the information types handled by the labeling scheme may not necessarily be di-
rectly related to the topology of the graph itself. Rather, it may be derived from various other
types of (external) data, stored in its vertices of the network. The idea is to eventually be
able to come up with data structures that will allow “local” deductions on the basis of small
parts of the data, without having to inspect the entire data structure. Conceivably, this may
lead to the development of abstract types of “fragmented” (or “localized”) data structures,
whose dependencies on the topology are only partial, giving rise to many interesting and
new problems.

11
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