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1 IntrodutionEÆient data strutures are at the heart of any data-manipulating omputer system, andthis fundamental fat is just as valid for distributed systems. Some distributed programminglanguages support distributed data strutures expliitly (f. [CGL86℄), and many distributedalgorithms use suh strutures (expliitly or impliitly) for their data-management purposes.But more importantly, suh strutures are in many ases onstruted not as part of any par-tiular algorithm but for diret use as the building bloks of various storage and retrievalmehanisms, suh as distributed ditionaries, name servers in ommuniation networks, bul-letin boards, resoure alloation managers and the like [Ree78, OD81, FWB85, LEH85,Ter87, MV88, GS89℄. The funtion ommon to all of these mehanisms is supplying failitiesfor storing aumulated information in the system and making it available to potential usersthroughout the system.The topi of distributed data strutures is rather wide, and the distributed setting raisesseveral issues that are not enountered in the usual, shared-memory sequential setting (f.[Pel90℄). In partiular, this topi touhes upon several large researh areas, suh as ordi-nary data strutures and data types, distributed database, and onurreny ontrol theory(f. [LM79, Her84, Wei84, BHG86, Pap86, Her87℄). We shall make no attempt to review therelevant literature here, nor shall we address the area of onurrent data strutures, whihrefers to data strutures stored in ommon (shared) memory but aessible by many pro-esses onurrently, f. [BS79, Ell80a, Ell80b, KL80, ML84, Man86, BB87, PK87, RK88℄,or the area of designing speial purpose VLSI mahines for implementing data strutures,f. [Lei79, ORS82, DS85, SS85, CCIR86, DS87, OB87, SL87, AK93℄.Rather, in this paper we shall restrit ourselves to dealing with one spei� aspet ofdistributed data strutures, namely, the relationships between the topology of the under-lying ommuniation network (and its graph-theoreti properties) and eÆient shemes fororganizing and distributing data in the various sites. When the ommuniation networkunderlying the system is based on a network of arbitrary topology, various graph-theoretiparameters beome signi�ant in determining the appropriate way for distributing the dataand the resulting omplexity.Our primary onern is to maintain the data struture using reasonable overall spaerequirements. However, no less important is the need to balane the memory loads overthe sites of the system. Future systems are expeted to arry enormous loads of data, anda single site an hardly be expeted to funtion as the sole storing site for a large datastruture. It is therefore desirable to be able to distribute the data in several sites andbalane the memory requirements of the data struture between all sites in the network.Suh a geographi distribution of data among the di�erent network sites is also ditated byonsiderations of aess speed and reliability.This survey disusses ombinatorial and algorithmi tehniques related to these issues,and overs omplexity results on various appliations. In partiular, we will fous on twospei� problems whih will be used for illustrating the main issues and ideas involved. The�rst of these problems onerns the design of ompat loalized shemes for message routingin ommuniation networks, and the seond deals with adjaeny and distane labeling1



www.manaraa.com

shemes, and more generally, informative loalized labeling shemes. For more detailedpresentation of various aspets of these problems see [Gav00, Gav01, Pel00a℄.2 Compat Loalized Strutures for RoutingDelivering messages between pairs of proessors is a basi ativity of any distributed om-muniation network. This task is performed using a routing sheme, whih is a mehanismfor routing messages in the network. The routing mehanism an be invoked at any originvertex and be required to deliver a message to some destination vertex.Using edge lengths to reet transmission osts and delays, it is naturally desirable toroute messages along paths that are as short as possible. A straightforward approah toahieving this goal is to store a omplete routing table in eah vertex v in the network,speifying for eah destination u the �rst edge (or an identi�er of that edge, indiatingthe output port) along some shortest path from v to u. This approah learly guaranteesoptimal routes, but may be too expensive for large systems sine it requires a total ofO(n2 logn) memory bits in an n-proessor network. Thus, an important problem in largesale ommuniation networks is the design of routing shemes that produe eÆient routesand have relatively low memory requirements. The eÆieny of a routing sheme is measuredin terms of its streth, namely, the maximum ratio between the length of a route produesby the sheme for some pair of proessors, and their distane.As a basi example, let us desribe an eÆient method, known as interval routing sheme(IRS) for storing shortest path routing information in a tree network. Start by traversing
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<4,[5,8]:1,[9,10]:2,[11,3]:3>Figure 1: An interval routing for T , and the data struture for the vertex 4.the n-node tree T in depth �rst searh fashion [Tar72℄, assoiating with eah vertex v anaddress label `(v) 2 [1; n℄ f. Fig. 1. Then, assoiate with eah outgoing edge (v; u) of v theset I(v; u) of labels of all the verties w with the property that the route from v to w startswith the edge (v; u). By onstrution, the labels ontained in I(v; u) are onseutive (modulon). Hene, to represent I(v; u) in v's memory it suÆes to store its interval boundaries, ata ost of O(logn) bits per set. Overall, the routing table of v is a data struture of theform h`(v); I(v; u1) :p1; I(v; u2) :p2; : : : ; I(v; ud) :pdi where p1; p2; : : : ; pd are respetively theoutput port numbers leading to the neighbors u1; u2; : : : ; ud (see Fig. 1 for the vertex labeled2
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4). Therefore the size of the routing table for v is O(d logn) bits, where d is the degree ofv. This should be ompared with the O(n logd) bit bound for a standard routing table. Animportant feature of this method is the assignment of both vertex and edge labels. Routinga message from a soure v to a destination w is done by searhing for the interval I(v; ui) inv's table suh that `(w) 2 I(v; ui) (implying that the message has to inlude the destinationlabel `(w) in its header), and then forwarding the message through output port pi to theneighbor ui. This loal omputation is then repeated at any intermediate node along theroute. This searh an be performed using logn omparisons by sorting the intervals or inO(log logn) time using more sophistiated data strutures [vBoas77℄. Observe that the loalmemory requirement inreases with the degree of the vertex (in Setion 4 we disuss otherlabeling shemes aiming at overoming the problem of large degree verties), but the totalmemory requirement is O(n logn) bits only.The interval routing sheme for trees is due to [SK85℄. This sheme an be applied rathereÆiently to ertain restrited graph families, and it has also been extended later to a widervariety of networks, f. [vLT87, FJ89, Fre93, FGS96, FG98℄. When onsidering intervalrouting shemes for lasses of graphs other than trees, a natural question is to identify whihgraphs admit interval routing along shortest paths [FG94, NS96, Fla97, EMZ97℄. Anothernatural extension is to allow using more than one interval on eah edge, raising the question ofhow many intervals are neessary to ensure shortest path routing, and how suh a sheme anbe implemented [FvLS98, GG98, GP98, GP99℄. For surveys of the many reent developmentsin this area see [vLT94, Gav00℄.The problem of eÆieny-memory tradeo�s for routing shemes was �rst raised in [KK77℄,whih proposed the general approah of hierarhially lustering a network into � levelsand using the resulting struture for routing. The total memory used by the sheme isO(n1+1=� � logn). However, in order to apply the method of [KK77℄ one needs to makesome fairly strong assumptions regarding the existene of a ertain partition of the network.Several variations and/or improvements were studied later, f. [KK80, Per82, Sun82℄.Most subsequent work on the problem has foused on solutions for speial lasses ofnetwork topologies. Shortest path (i.e., streth fator 1) routing shemes with total memoryrequirement O(n logn) were designed for simple topologies like trees [SK85℄, unit-ost rings,omplete networks and grids [vLT86, vLT87℄ and networks at the lower end of a hierarhy(beginning with the outerplanar networks) identi�ed in [FJ88℄. The problem of designingmemory-eÆient near-optimal routing shemes was ast in a theoretial formulation in [FJ86,FJ88, FJ89℄, where it was also given preise solutions for various graph lasses up to andinluding planar graphs. Near-optimal strethed routing shemes were onstruted in [FJ89,FJ90℄ for -deomposable networks, for onstant , and for planar networks. The shemesfor -deomposable networks guarantee streth fator ranging between 2 and 3 (spei�ally,1 + 2=a where a > 1 is the positive root of the equation ad(+1)=2e � a � 2 = 0) and havetotal memory requirement O(2 log  � n log2 n). The shemes for planar networks guaranteestreth fator 7 and have total memory requirement O(1�n1+� � logn) bits for any onstant0 < � < 13 . A ruial step in onstruting these routing shemes is assigning names to theverties as part of the routing sheme. The above optimal shemes use O(logn) bit labels,and the routing mehanism needs to modify the header during the message propagation.3
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The shemes of [FJ90℄ for -deomposable networks use O( log  � logn) bit names andthe shemes of [FJ89, FJ90℄ for planar networks use O(1� logn) bit names and rewritableheaders. Reently, [GH99℄ have onstruted new routing shemes for planar graphs withoptimal streth 1. Based on book embeddings, these shemes use label names 2 [1; n℄ andwork with non rewritable headers. The memory bound is 8n + o(n) bits per vertex. Theshemes an be extended to g genus graphs with n log g +O(n) memory bits per vertex. Asanother example, the onstrution of 3-spanners for the family of hordal graphs desribedin [PS89℄ an be used to onstrut routing shemes for these graphs with streth fator 3and O(n log2 n) bits of memory in total. For Eulidean networks, namely, networks whosesites are embedded in the 2-dimensional plane with Eulidean distanes, reent papers havedealt with proposing eÆient designs for ompat routing shemes, based on ompass routingmethods (f. [BCSW98, KSU99℄) or eÆient spanner onstrutions [HP00℄.The problem of onstruting ompat routing shemes for arbitrary unweighted networkswas studied in [PU89℄, whih presents a family of hierarhial routing shemes (for every �xedinteger � � 1) that guarantee streth O(�) and require storing a total ofO ��3 � n1+1=� � logn�bits of routing information in the network. Just as for the IRS approah and the routingshemes of [FJ89, FJ90℄, the shemes of [PU89℄ require assigning suitable names to the ver-ties. these names are of size O(log2 n) bit. However, the headers attahed to the messagesrequire only O(logn) bits. Furthermore, these shemes (as well as most earlier approahes,suh as IRS and the shemes of [FJ89, FJ90℄) have the disadvantage that the routing infor-mation is not balaned on the set of verties. In the worst-ase, some verties may require
(n logn) bits of memory.The solution of [PU89℄ was later generalized in a number of ways, and various qualitiesof the resulting shemes were improved in [PU87, ABLP89, ABLP90, AP92, Pel93℄. Forinstane, the shemes were extended to weighted graphs, they were modi�ed to work ina setting where verties an freely selet their own names or routing labels, they were pro-vided with eÆient and distributed preproessing proedures and so on. These developmentsparallel a hain of suessive improvements in the orresponding luster-based representa-tions used by the shemes. Reent developments onerning ompat routing shemes withlow streth (mainly integral strethes � 5) are presented in [KKU95, FG97, GG97, NO97,EGP98, CG00, Cow01℄, and also in [TZ01℄ for higher strethes. See [Gav01, Pel00a℄ for moredetailed overviews.Lower bounds for the spae-eÆieny tradeo� of routing shemes were studied in [PU89,FG95, FG96, GP96, BHV96, KK96, GG97℄. More preisely, in [PU89℄ it is shown that everyrouting strategy that guarantees an s strethed routing sheme for every n-vertex graphmust provide at least a total of 2
(n1+1=(2s+4)) di�erent routing shemes. Thus no routingstrategy an guarantee for every graph a routing sheme with a streth fator O(�) ando(n1+1=�) bits of total memory. For the ase of optimal streth 1, it is shown in [GP96℄ thatfor every shortest path routing strategy and for every d suh that 3 � d � (1 � �)n, thereexists a worst-ase graph of degree bounded by d on whih the total memory requirement is
(n2 log d), mathing with the memory requirements of standard routing tables. Both lowerbounds assume that routes and O(logn) bit label names an be omputed and optimized bythe routing strategy in order to derease the memory requirement.4
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The issues of name independene and balaning the memory requirements were �rst raisedin [ABLP89℄. The shemes proposed in [ABLP89, Pel93℄ are name-independent and applyto arbitrary weighted networks. However, they have an inferior eÆieny-spae tradeo�.For instane, the shemes of [ABLP89℄, for � � 1, use O(� � n1=� � logn) bits of memoryper vertex and guarantee a streth of O(�2 � 9�). The tradeo� was �nally improved by theshemes of [AP92℄, whih are simpler, and possess the additional attrative features disussedabove. The streth is O(�2) and the memory requirement is O(� �n1=� log2 n � logD) bits pervertex, where D is the weighted diameter of the network. In fat, the tradeo� obtained inthe shemes of [AP92℄ is still not optimal, and it is oneivably possible to redue the strethfator of the routing shemes from O(�2) to O(�). Several other types of routing shemesfor general networks are presented in [PU87, ABLP90, TZ01℄.It is worth noting that the sheme of [ABLP89℄ has one additional advantage, namely, itsmemory omplexity is independent of the range of the edge osts, or the network's diameter(or put another way, the routing algorithm is \purely ombinatorial"). Finally, it has beenproven in [EGP98℄ that, whatever the streth bound is, every name-independent routingstrategy that guarantees less than O(pn ) bits per vertex needs rewritable headers. (Atuallyit is not diÆult to see that the memory bound an be pushed to �(n logn) bits.) So, therouting protools of [ABLP89℄ and [AP92℄ that, in essene, proeed in O(�) routing phases(whih need to be memorized in the headers) annot be simpli�ed below a ertain point.Other related work deals with routing with suint routing tables. The ase of dynaminetworks is dealt with in [AGR89℄ in the limited setting of networks whose topology is atree, and the topologial hanges are restrited to growing (i.e., new edges and verties areoasionally added to the network). And reently, the routing problem was dealt with in theontext of the new generation of ATM and optial networks [DKKP95℄.3 Adjaeny and Distane Labeling ShemesMost traditional entralized approahes to the problem of network representation are basedon storing adjaeny information using some kind of a data struture, e.g., an adjaenymatrix. Suh representation enables one to deide, given the indies of two verties, whetheror not they are adjaent in the network, simply by looking at the appropriate entry in thetable. However, note that (a) this deision annot be made in the absene of the table,and (b) the indies themselves ontain no useful information, and they serve only as \plaeholders", or pointers to entries in the table, whih forms a global representation of thenetwork.In ontrast, for a distributed omputing setting we are interested in more informativeand loalized shemes for representing the network. In partiular, labeling shemes are basedon the idea of assoiating with eah vertex a label seleted in a suh way, that will allow usto infer the adjaeny of two verties diretly from their labels, without using any additionalinformation soures. Hene in essene, this rather extreme approah to the network repre-sentation problem disards all other omponents, and bases the entire representation on theset of labels alone. 5
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Obviously, labels of unrestrited size an be used to enode any desired information.Spei�ally, it is possible to enode the entire row i in the adjaeny matrix of the graphin the label hosen for vertex i. As another onrete example, adjaeny labeling systemsof general graphs based on Hamming distanes were studied in [Bre66, BF67℄. Spei�ally,in [BF67℄ it is shown that it is possible to label the verties of every n-vertex graph with2n� bit labels suh that two verties are adjaent if and only if their labels are at Hammingdistane 4�� 4 or less of eah other, where � is the maximum vertex degree in the graph.However, eÆieny onsiderations, similar to those disussed in the previous setionregarding routing shemes, ditate the use of relatively short labels (say, of length poly-logarithmi in n), whih nevertheless allow us to dedue adjaenies eÆiently (say, withinpolylogarithmi time).EÆient adjaeny labeling shemes were introdued in [KNR88℄. In partiular, a labelingsheme using 2 logn bit labels was proposed for the lass of trees. Given a tree T with nverties, hoose a root and assoiate a distint integer `(v) 2 [1; n℄ with eah vertex v of T ,and then assign a vertex v with parent w the label h`(v); `(w)i. Given two labels h`(v); `(w)iand h`(v0); `(w0)i, one an hek if the verties v and v0 are neighbors, as this happens ifand only if one is the parent of the other, i.e., if either `(v) = `(w0) or `(v0) = `(w). Thissheme was extended in [KNR88℄ to O(logn) adjaeny labeling shemes for a number ofother graph families, suh as bounded arboriity graphs (inluding, in partiular, graphs ofbounded degree or bounded genus, e.g., planar graphs), various intersetion-based graphs(inluding interval graphs), and -deomposable graphs.This natural idea lay dormant for over a deade, until interest in this diretion wasrevived by the observation that the ability to deide adjaeny is only one of a numberof basi properties a representation may be required to possess. In partiular, anothernatural property of interest may be the ability to determine the distane between two vertieseÆiently (say, in polylogarithmi time again) given their labels. This has led to the notionof distane labeling shemes, whih are shemes possessing this ability [Pel99℄. It is learthat distane labeling shemes with short labels are easily derivable for highly regular graphlasses, suh as rings, meshes, tori, hyperubes, and the like. It is less lear whether moregeneral graph lasses an be labeled in this fashion. It was shown in [Pel99℄ that the lass of n-vertex weighted trees with m bit edge weights enjoys an O(m logn+log2 n) distane labelingsheme. This sheme is omplemented by a mathing lower bound [GPPR01℄, showing that
(m logn+log2 n) bit labels are neessary for this lass. In [GPPR01℄ the sheme is extendedto n-vertex graphs with an r(n)-separator. It is shown that this lass supports a shemewith labels of size O(R(n) � logn), where R(n) = Plog ni=1 r(n=2i). We have R(n) � r(n) logn,and for monotone r(n) � n� with onstant � > 0, R(n) = O(r(n)). For bounded treewidthgraphs (inluding trees, outerplanar graphs, series-parallel graphs, k-outerplanar graphs and-deomposable graphs for onstant k and ), R(n) = O(logn) sine r(n) = O(1), and forbounded genus graphs (inluding planar graphs), R(n) = O(r(n)) = O(pn ).Roughly speaking, the sheme is based on building a tree-deomposition T of the n-vertexgraph G (f. Fig. 2). Eah node of T orresponds to a separator of G. In partiular, theroot of T orresponds to a subset S of verties of G suh that jSj � r(n) and suh that GnSonsists of onneted omponents of size at most n=2. (If G is itself a tree then r(n) = 1,6
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and the singleton S is a enter of the tree.) Eah onneted omponent of GnS orrespondsto a subtree of T , so that any shortest path from u to v in G taken from di�erent subtreeshas to ross some verties of S. The label of u, L(u), onsists of the onatenation of all thedistanes in G between u and the verties of G ontained in all the anestor nodes of u inT (the node ontaining u has at most logn anestors). To ompute the distane between uand v, it suÆes to ompute their least ommon anestor in T , say S, and then to omputed(u; v) = minz2S fd(u; z) + d(v; z)g. Note that to ompute this minimum, the labels of uand of v must enode the verties of S.
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Figure 2: The separator tehnique for distane labeling.This sheme is near-optimal sine there is a lower bound of 
(r(n)) on the label sizefor the lass of all the graphs having an r(n)-separator [GPPR01℄. However, for the lass ofplanar graphs (whih is a proper sublass of the lass of graphs with O(pn )-separator) thereis a spei� lower bound of 
(n1=3), leaving an intriguing (polynomial) gap. More reently,shemes with O(log2 n) bit labels that do not make use of the separator tehnique werepresented for n-vertex interval and permutation graphs [KKP00℄ and for distane hereditarygraphs [GP01a℄.As observed in [KNR88℄, a lass of 2
(n1+�) n-vertex graphs, must use adjaeny labels(and thus distane labels) whose total ombined length is 
(n1+�), hene at least one labelmust be of 
(n�) bits. Spei�ally, for the lass of all unweighted graphs, any distanelabeling sheme must label some n-vertex graphs with labels of size 
(n). Conversely, thereexists a sheme for the lass of arbitrary unweighted n-vertex graphs with O(n) bit labels,whih requires O(log logn) time to deode the distane from the labels [GPPR01℄. Hene�(n) bits is the optimal distane label length for general unweighted graphs.This raises the natural question of whether more eÆient labeling shemes an be on-struted if we abandon the ambitious goal of apturing exat information, and settle forobtaining approximate estimates. An (s; r)-approximate distane labeling sheme is a dis-tane labeling sheme suh that for u; v oming from the same graph, the estimated distane~d(u; v) omputed by the sheme from the labels L(u) and L(v) satis�es d(u; v) � ~d(u; v) �s � d(u; v) + r. In partiular, distane labeling shemes oinide with (1; 0)-approximatedistane labeling shemes.General weighted graphs were given an (8�; 0)-approximate distane labeling sheme,7
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for every integer � � 1, with O(� � n1=� logn � logD) bit labels [Pel99℄, where D is theweighted diameter of the graph, and later an improved (2�� 1; 0)-approximate sheme withO(n1=� log1�1=� n � log(nD)) bit labels [TZ01a℄. The time to deode the estimated distaneis O(�). This implies a (2 logn; 0)-approximate sheme with O(log2 n) bit labels for generalunweighted graphs. These results are omplemented by a lower bound in 
(n1=�) on the labelsize of (
(�); 0)-approximate shemes, presented independently in [TZ01a℄ and in [GKK+01℄.It is interesting to notie that a small variation on the quality of the estimators, saymoving from (1; 0)-approximate to (1 + o(1); 0)-approximate or to (1; O(1))-approximateshemes, results in a signi�ant impat on the label size. Trees, and more generally graphswith r(n)-separator, support a (1 + 1= logn; 0)-approximate sheme with O(R(n) � log logn)bit labels [GKK+01℄. In partiular, trees enjoy O(logn � log logn) bit label (1 + 1= logn; 0)-approximate distane labeling sheme. A lower bound of 
(logn � log logn) is also shownin [GKK+01℄ for any (1 + 1= logn; 0)-approximate distane labeling sheme on the lassof trees. Reently, [KM01℄ proposed a logn + O(plogn ) bit labeling sheme that allowsomputing the exat distane between two verties of a tree at distane d < plogn, thusimproving on the 2 logn bit solution of [KNR88℄ for adjaeny labeling shemes in trees.A number of additional approximate distane labeling shemes are presented in [GKK+01℄,inluding a (3; 0)-approximate sheme with O(n1=3 logn) bit labels for planar graphs, a (1; 1)-approximate sheme with O(logn) bit labels for interval graphs, a (1; 2)-approximate shemewith O(logn) bit labels for permutation and AT-free graphs, and a (1; b=2)-approximatesheme with O(log2 n) bit labels for -hordal graphs (namely, all graphs whose longest in-dued yle is no greater than ). In partiular, it yields a (1; 1)-approximate labeling shemefor hordal graphs, to be ontrasted with the fat that every exat ((1; 0)-approximate)sheme requires 
(n) bit labels on some hordal graphs. The question of the exat label sizeomplexity of distane labeling sheme of interval and permutation graphs is left open, withthe bounds ranging from 
(logn) to O(log2 n) [KKP00℄.Finally, a quality measure of interest is the time required for deoding the labels and de-duing the information stored in them. All the approximate shemes presented in [GKK+01℄(for trees, planar, -hordal and interval graphs and so on) require a onstant time omplex-ity for deoding the distane estimator on a word-RAM omputer. However, an intriguingresult established in [GPPR01℄ is that there exist n-vertex graphs Gn whih enjoy a distanelabeling with labels of size O(logn) on the one hand, but on the other hand, if one uses onGn labels with fewer than n=2 bits, then time exponential in n may be required for deodingthe distane. A similar result is obtained therein for planar graphs.4 Informative Loalized Labeling ShemesRouting, adjaeny and distane labeling shemes have several ommon features. Mostimportantly, they all address the general question of developing label-based network repre-sentations that allow retrieving useful information about arbitrary funtions or substruturesin a graph in a loalized manner, i.e., using only the loal piees of information availableto, or assoiated with, the verties under inspetion, and not having to searh for addi-8
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tional global information. We refer to suh representations as informative labeling shemes,formally desribed in [Pel00b℄.To illustrate this onept with respet to additional funtions, let us onentrate on thelass of rooted trees. In addition to �nding out whether two given verties v and w areadjaent, or what is the distane between them, one may be interested in many other pieesof information onerning these verties. For example, in some ases it may be useful toknow if v is an anestor (or a desendant) of w. It is rather easy to enode the anestryrelation in a tree with 2 logn bit labels using interval-based shemes (f. [SK85℄). It turns outthat anestor queries an be handled by a sheme using logn+O(plogn ) bit labels [TZ01,KM01a℄. More sophistiated labeling shemes allow us to ombine parent and anestorqueries with 2 logn+O(log logn) bit labels [KM01a℄. Moreover, queries an be answered inonstant time on a word-RAM omputer.Another example for a piee of non-numeri information that may be required is theleast ommon anestor of v and w. Standard solutions [HT84, SV88℄ an answer suhqueries in onstant time with suitable preproessing of the tree, but annot be applied in aloalized omputation setting., as they require some aesses to a global table of O(n) items.In [Pel00b℄, it is shown that the identi�er of the least ommon anestor an be found using alabeling sheme with O(log2 n) bit labels. This sheme is asymptotially optimal if vertieshave freely hosen their own identi�er. However, if it is only required to return the labelof the least ommon anestor (that is, all the vertex identi�ers onsist of the labels issuedby the labeling sheme), then it an be done with O(logn) bit labels [AGKR01℄. Anotherrelated funtion is the separation level of two verties of a rooted tree, de�ned as the depthof their ommon anestor. This funtion is given in [Pel00b℄ a labeling sheme similar tothe one for distane labeling, with (asymptotially optimal) O(log2 n) bit labels. As anadditional example, labeling shemes for ow and onnetivity were studied in [KKKP01℄.An (asymptotially optimal) ow labeling sheme using O(logn�log!) bit labels is presentedfor general n-vertex graphs with maximum (integral) apaity !. For edge-onnetivity, thisyields a tight bound of �(log2 n) bits. Also, a k-vertex onnetivity labeling sheme isgiven for general n-vertex graphs using O(logn) bit labels for �xed k. Finally, a lowerbound of 
(k logn) is established for k-vertex onnetivity on n-vertex graphs where k ispolylogarithmi in n.The types of loalized information to be enoded by an informative labeling sheme arenot limited to binary relations. An example for information involving three verties v, wand u is �nding their enter, namely, the unique vertex z suh that the paths onneting itto v, w and u are edge disjoint. More generally, for any subset of verties S in a weightedgraph, one may be interested in inferring w(S), the weight of their Steiner tree (namely, thelightest tree spanning them), based on their labels. It is easy to verify that an exat Steinerlabeling sheme for the the lass of n-vertex graph requires 
(n) bit labels. However, thelass of arbitrary n-vertex graphs with m bit edge weights admit a O(logn)-multipliativeapproximate Steiner labeling sheme using O(m log2 n + log3 n) bit labels [Pel00b℄. For n-vertex trees with m bit edge weights, there exists an exat sheme with O(m logn+ log2 n)bit labels, whih is asymptotially optimal [Pel00b℄.Revisiting ompat routing shemes as informative labeling shemes reently yielded9
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some improvements for routing problem on trees. Informally speaking, the routing probleman be presented as requiring us to assign two kinds of labels to every vertex of a graph.The �rst is the address of the vertex, whereas the seond label is a data struture alledthe loal routing table. The labels are assigned suh a way that at every soure vertex vand given the address of any destination vertex u, one an deide the �rst edge (or anidenti�er of that edge) outgoing of v that leads to u (say, through a shortest path). Thedeision must be taken loally in v, based solely on the two labels of v and with the addresslabel of u. For instane, a labeling for trees that uses 3 logn bits for the addresses andO(minfd logn;pn logng) bits for the loal routing table, where d is the degree of the vertex,is onstruted in [Cow01℄. (This improves on the labeling presented in Setion 2 for largedegree verties). In [EGP98℄ it is shown that every routing sheme that selets addressesin the range [1; n℄ has an 
(pn ) bit loal routing table for some n-vertex trees. Hene byinreasing the address size, a variant of this problem would be to onsider routing labels suhthat the message an be routed between v to u relying solely on their label (and possibly thelabels of the intermediate verties along the route) without any routing tables. This leadsto the notion of routing labeling shemes. Obviously suh a labeling an be obtained from astandard routing sheme by onatenating in a single label, for every vertex v, the addressof v and its loal routing table. Surprisingly, n-vertex trees have routing labeling shemeswith only  logn bit labels [FG01℄, for a small onstant . It is even proved in [TZ01℄ thatthe onstant  an be redued to  = 1 + O(1= log logn). Combined with the 
(pn ) lowerbound of [EGP98℄, this emphasizes that a variation of an additive term of O(logn= log logn)bits on the size of the addresses plays an important role on the size of the routing table.At this stage, let us disuss potential appliations for informative labeling shemes. Itseems likely that labeling shemes may prove useful for various appliations in the ontextsof ommuniation networks and distributed protools. The relevane of distane labelingshemes in the ontext of ommuniation networks has been pointed out in [Pel99℄, andillustrated by disussing the potential appliation of suh labeling shemes to distributedonnetion setup proedures in iruit-swithed networks. Some other problems where itseems that distane labeling shemes may be useful inlude memory-free routing shemes,bounded (\time-to-live") broadast protools, topology update mehanisms et. For spei�lasses of graphs, like rooted trees, it is shown in [AKM01℄ how to use anestor labelingshemes to optimize queries on large database with XML searh engines. It is also plausiblethat other types of informative labeling shemes may prove useful for other appliations. Forinstane, one an envision using Steiner labeling shemes as a tool for optimizing multiastshedules and seletion of subtrees for group ommuniation, and potentially even for ertaininformation representation problems on the Web. Moreover, one may expet that suitableinformative labeling shemes will be appliable in entirely di�erent appliation domains aswell, inluding for instane omputational geometry (in the ontext of Eulidean graphs) andombinatorial optimization in general, by viewing a vertex labeling as a \nie," i.e., easilymanagable, representation of the graphLet us onlude with a brief disussion of future prospets. As observed along this paper,both the quality and the ost of an informative labeling sheme depend on two entralfators: the type of information handled by the sheme, and the lass of networks for whih10
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the sheme is designed. Nevertheless, there is hope that general and uniform algorithmi anddata-struturing tehniques will emerge that will failitate the design of informative labelingshemes for many types of information, or even the design of general shemes apable ofenoding a group of information types together, for instane, routing and distane.Finally, the information types handled by the labeling sheme may not neessarily be di-retly related to the topology of the graph itself. Rather, it may be derived from various othertypes of (external) data, stored in its verties of the network. The idea is to eventually beable to ome up with data strutures that will allow \loal" dedutions on the basis of smallparts of the data, without having to inspet the entire data struture. Coneivably, this maylead to the development of abstrat types of \fragmented" (or \loalized") data strutures,whose dependenies on the topology are only partial, giving rise to many interesting andnew problems.

11
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